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Abstract—Semi-supervised clustering leverages prior informa-
tion in the form of constraints to achieve higher-quality clustering
outcomes. However, most existing methods struggle with large-
scale datasets owing to their high time and space complexity.
Moreover, they encounter the challenge of seamlessly integrat-
ing various constraints, thereby limiting their applicability. In
this paper, we present Scalable Semi-supervised clustering via
Structural Entropy (SSSE), a novel method that tackles scalable
datasets with different types of constraints from diverse sources
to perform both semi-supervised partitioning and hierarchical
clustering, which is fully explainable compared to deep learning-
based methods. Specifically, we design objectives based on
structural entropy, integrating constraints for semi-supervised
partitioning and hierarchical clustering. To achieve scalability
on data size, we develop efficient algorithms based on graph
sampling to reduce the time and space complexity. To achieve
generalization on constraint types, we formulate a uniform
view for widely used pairwise and label constraints. Extensive
experiments on real-world clustering datasets at different scales
demonstrate the superiority of SSSE in clustering accuracy and
scalability with different constraints. Additionally, Cell clustering
experiments on single-cell RNA-seq datasets demonstrate the
functionality of SSSE for biological data analysis.

Index Terms—Semi-supervised clustering, structural entropy,
scalable clustering, biological data analysis

I. INTRODUCTION

SEmi-supervised clustering extends unsupervised clustering
with additional prior information to enhance the clustering

outcomes with higher quality [1]. Conventional unsupervised
clustering aims to divide data points into groups with high
intra-group similarities and low inter-group similarities [2]
relying solely on the input data. In contrast, semi-supervised
clustering techniques guide the clustering process by har-
nessing the power of prior information in the form of con-
straints [3], making clustering outcomes more accurate and
better aligned to user preference. Over the past years, semi-
supervised clustering has achieved success in many domains,
such as image segmentation [4], bioinformatics [5], and
medicine [6].

Most semi-supervised clustering methods are derived from
conventional unsupervised techniques by integrating prior in-
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formation, such as KMeans-based [7], hierarchical-based [8],
density-based [9], spectral clustering-based [10], nonnegative
matrix factorization (NMF)-based [11], and neural network-
based [5] methods. These provided prior information can
come from various sources and manifest in different types of
constraints. Two commonly used constraint types are pairwise
constraint [12] and label constraint [1], [7]. Other types of
constraints, such as triplet constraint [13] and size constraint
[14], also exist. However, many existing methods are tailored
to handle a single type of constraint, which hinders their
generalization ability. The lack of ability to handle different
types of constraints is a major limitation of existing semi-
supervised clustering methods.

The key to semi-supervised clustering lies in how they uti-
lize prior information. A prevalent way involves incorporating
a regularization term into the original clustering objective [7],
[10]. This regularization term prevents algorithms from form-
ing clusters conflicting with the provided prior information.
Another way involves a similarity (or distance) learning step
using prior information along with a clustering step [15],
[16]. Similarity learning gives more informative similarities
among instances, guiding the downstream clustering step to
a more accurate outcome. Additionally, prior information can
be used in forming the initialization of KMeans clustering
[1], guiding the merging of agglomerative clustering [17],
and so on. However, regardless of how prior information
is utilized, most semi-supervised clustering methods exhibit
significant time and space complexity. For methods [7], [10]
based on regularization terms, they tend to consume more
time and space than the original clustering methods. For
methods [15], [16] based on similarity learning, they require
time-consuming instance-wise learning. Consequently, neither
of them can be applied to large-scale datasets. Many efforts
have been made to achieve scalable clustering, such as over-
clustering data points into super-instances [18] and selecting
representative anchors for relationship measuring [19], [20].
In contrast, the scalability issue of semi-supervised clustering
methods is less addressed. Van et al. achieve fast merging-
based active clustering COBRA [17] via KMeans-based over-
clustering. However, COBRA’s use of sequential constraints
makes it less scalable to the number of constraints. Gao
et al. propose an efficient local search algorithm FastCCP
[21] for semi-supervised clustering. However, the depth-first-
search that FastCCP depends on can hardly handle super large
datasets. Therefore, the lack of scalability is another major
limitation of existing semi-supervised clustering methods.

To address the aforementioned issues, we propose Scalable
Semi-supervised clustering via Structural Entropy, namely
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Fig. 1. An illustration of the sampling-based scalability strategy in SSSE framework.

SSSE, which, unlike deep learning-based methods, is fully
explainable. Compared to existing semi-supervised clustering
methods, SSSE is more scalable to the number of data points
and constraints, and is more general for performing both par-
titioning and hierarchical clustering with different constraints.
Specifically, we design objectives based on structural entropy
along with a regularization term. This term is defined on
a data graph G and a relation graph G′, both sharing the
same set of vertices, which represent the input data X and
the prior information in the form of constraints, respectively.
To achieve generalization on constraint types, we formulate
different constraints as a uniform view and store them in
the relation graph G′. To achieve scalability on data size,
we adopt a sampling-based strategy following Cao et al. [22]
and propose a neighborhood-preserving sampling strategy to
alleviate the impedance of sampling. We devise the two-
dimensional (2-D) SSSE and the high-dimensional (high-D)
SSSE based on 2-D structural entropy and high-D structural
entropy for semi-supervised partitioning and hierarchical clus-
tering, respectively.

The detail of the sampling-based scalability strategy is
shown in Fig. 1. Unlike Cao et al. [22], who sample subgraphs
randomly, we adopt a neighborhood-preserving sampling strat-
egy to maintain the intrinsic neighborhood structure of the
original graph. Furthermore, we design our sampling process
for parallel implementation, where the original graph is split
into several subgraphs and then the clustering is performed on
these subgraphs in parallel. This scalability strategy comprises
four stages: graph construction, sampling and clustering, graph
update, and final clustering. In the graph construction stage,
we construct a data graph Ĝ from the whole dataset X . In the
sampling and clustering stage, we sample a subgraph G from
Ĝ and perform clustering on G. In the graph update stage,
we take clusters from the previous clustering as new data
points, i.e., new vertices, and insert them back into Ĝ. The
procedure of Stage II and Stage III is performed repeatedly
until the number of remaining vertices is small enough as
the red arrow in Fig. 1 shows. In the final clustering stage,
we perform clustering on the remaining graph Ĝ and restore
the clustering result on the whole dataset X . This sampling-
based scalability strategy avoids direct clustering on the whole
dataset X at a large scale. It reduces the data size after the
sampling and clustering step, making SSSE an efficient and
scalable method.

We comprehensively evaluate SSSE on 9 clustering datasets
concerning two types of constraints. Compared to the unsu-
pervised baseline SE, SSSE achieves up to 18% performance
improvement and up to 30 times acceleration. We also apply
SSSE to cluster cells in single-cell RNA-seq datasets at
different scales, demonstrating the functionality of SSSE for
biological data analysis. The main contributions of this paper
can be summarized as follows:
• We propose a Scalable Semi-supervised clustering ap-

proach via Structural Entropy (SSSE). Its scalability is
achieved by a sampling-based scalability strategy based on
the neighborhood-preserving graph sampling strategy.
• We devise a unified approach for pairwise and label

constraints and integrate them in a regularization term to form
the objectives of SSSE.
• We design algorithms to effectively optimize the ob-

jectives of SSSE to enable semi-supervised partitioning and
hierarchical clustering.
• We conduct experiments on real-world clustering datasets

and single-cell RNA-seq datasets at different scales to verify
the effectiveness and scalability of SSSE on semi-supervised
clustering and biological data analysis.

This paper is an extension of our conference paper [23].
We have extended the technical contribution and the empirical
evaluation of algorithms. The main extension in this paper can
be summarized as follows: (1) We address the scalability issue
of semi-supervised clustering. To achieve efficient and scalable
semi-supervised clustering, we adopt a sampling-based scala-
bility strategy based on the proposed neighborhood-preserving
graph sampling strategy for SSSE. (2) We evaluate SSSE
on much larger clustering datasets and also demonstrate the
application of SSSE in biological data analysis at different
scales. (3) We discuss more comprehensive related works,
especially in scalable clustering.

II. BACKGROUND AND PRELIMINARIES

A. Problem Formulation
Semi-supervised clustering aims to group data points from

input data X = {x1,x2, ...,xn} into subsets, namely clusters,
according to the given prior information in different forms
of constraints. For partitioning clustering, data points are
grouped into a certain non-overlapping partitioning P =
{X1, X2, ..., XL}, where Xi is the i-th cluster and L is the to-
tal number of clusters. For hierarchical clustering, data points
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are grouped into nested clusters organized as a clustering tree
T , where each cluster α on the tree is the union of its children.
Semi-supervised clustering forms a partitioning or a clustering
tree while integrating constraints to boost clustering accuracy
and align with user preferences. In this work, we focus on two
representative types of constraints: pairwise constraints, which
reveal the relationship between data point pairs, and label
constraints, which reveal the relationship between data points
and ground truth class labels. Pairwise constraints include
must-link constraints M = {(xi,xj): li = lj}, indicating that
data point pair (xi,xj) must belong to the same cluster, and
cannot-link constraints C = {(xi,xj): li ̸= lj}, indicating
that data point pair (xi,xj) must belong to different clusters,
where li is the cluster indicator of xi. Label constraints include
positive constraints P = {(xi, ym): xi ∈ ym}, indicating
that the true class label of xi is ym, and negative constraints
N = {(xi, ym): xi /∈ ym}, indicating that the true class label
of xi is not ym. We standardize these two types of constraints
and store them in a relation graph G′. Together with a data
graph G from the input data X , we optimize objectives based
on structural entropy to perform semi-supervised partitioning
and hierarchical clustering.

B. Structural Entropy

In 2016, Li and Pan [24] proposed structural information
theory and gave complete definitions of structural entropy.
Intuitively, structural entropy is a measurement of graph com-
plexity by encoding tree structures via characterizing the un-
certainty of the hierarchical topology of graphs. The structural
entropy of graph G is defined on an associated encoding tree
T , revealing the amount of uncertainty that remained in G
after encoded by T . Through structural entropy minimization,
the optimized hierarchical clustering result of vertices in G
is retained by T . Structural entropy has been widely used
in the field of bioinformatics [25], graph neural networks
[26], and reinforcement learning [27]. It is also used in
some other works related to clustering, including unsupervised
hierarchical clustering [28], deep graph clustering [29], and
our previous work SSE for semi-supervised clustering [23].

Let G = (V,E,W) be an undirected weighted graph, where
V = {v1, ..., vn} is the vertex set, E is the edge set, and W ∈
Rn×n is the edge weight matrix. The encoding tree T of G is
a hierarchical rooted tree where each tree node α associates
with a vertex set Tα. The root node λ of T associates with
Tλ = V and each leaf node ν associates with Tν containing
only one vertex in V . For each non-leaf node α ∈ T , the
successors of α are associated with disjoint vertex subsets,
and the union of these subsets is Tα. The structural entropy
of G given by T is defined as follows:

HT (G) =
∑

α∈T ,α ̸=λ

HT (G;α) =
∑

α∈T ,α̸=λ

− gα
VG

log2
Vα

Vα−
,

(1)
where HT (G;α) is the assigned structural entropy of α, gα is
the cut, i.e., the sum of edge weights between vertices in and
not in Tα, Vα and VG are the volumes, i.e., the sum of vertex

degrees in Tα and G, respectively. The structural entropy of
G is defined as:

H(G) = min
T

{HT (G)}, (2)

where T ranges over all possible encoding trees. The vertex
sets associated with tree nodes form a hierarchical clustering
of vertices in V .
K-D Structural entropy. The K-D structural entropy is the
structural entropy given by the encoding trees with the height
of at most K. When K = 2, the encoding tree represents
graph partitioning, which can be used to perform partitioning
clustering. A 2-D encoding tree T can be formulated as a
graph partitioning P = {X1, X2, ..., XL} of V , where Xi is a
vertex subset called module associated with the i-th children
of root λ. The structural entropy of G given by P is defined
as:

HP(G) = −
∑
X∈P

∑
vi∈X

gi
VG

log2
di
VX

−
∑
X∈P

gX
VG

log2
VX

VG
,

(3)
where di is the degree of vertex vi, gi is the cut, i.e., the sum
of edge weights connecting vi and other vertices, VX and VG

are the volumes, i.e., the sum of vertex degrees in module X
and graph G, respectively, and gX is the cut, i.e., the sum of
edge weights between vertices in and not in module X .

III. METHODOLOGY

In this section, we elaborate on the proposed scalable semi-
supervised clustering via structural entropy (SSSE) in detail,
which is based on our previous work SSE [23]. This paper
addresses the scalability issue of semi-supervised clustering
by graph sampling. The main idea of SSSE is to perform clus-
tering on sampled subgraphs and insert obtained clusters back
into the remaining graph as new data points. The framework
of SSSE is depicted in Fig. 2.

For a dataset X along with given prior information, we first
construct a data graph G and a relation graph G′. Then, we get
a data subgraph and a relation subgraph by graph sampling and
perform semi-supervised clustering on these two subgraphs.
Clusters obtained in this round are aggregated into new data
points and inserted back into G and G′. This sampling-and-
clustering step is performed until the remaining graphs are
small enough for fast clustering. Finally, we perform semi-
supervised clustering on the remaining graphs and restore
clusters from the previous steps.

Three key components of SSSE are graph construction (Sec.
III-A), 2-D SSSE for semi-supervised partitioning clustering
(Sec. III-B), and high-D SSSE for semi-supervised hierarchical
clustering (Sec. III-C). In the graph construction component,
we construct a p-nearest neighbor similarity graph from dataset
X as the data graph G and a relation graph G′ from the given
prior information. In the 2-D SSSE component, we devise
an objective function based on the 2-D structural entropy to
achieve semi-supervised partitioning clustering and optimize
it via two operators merging and moving. In the high-D SSSE
component, we further extend the objective function for semi-
supervised hierarchical clustering and optimize it via two
operators stretching and compressing.
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Fig. 2. The SSSE framework. We illustrate SSSE on a small dataset. (I) Two graphs G and G′ are constructed from input data and prior information in the
formats of pairwise constraints and label constraints, respectively. (II) Semi-supervised clustering is performed on the sampled graphs. (III) Semi-supervised
clustering is performed on the remaining graphs, in which obtained clusters are taken as new data points. For semi-supervised partitioning clustering, clustering
in (II) and (III) is achieved by two operators merging and moving, while for semi-supervised hierarchical clustering, clustering is achieved by stretching and
compressing.

A. Graph Construction

The proposed SSSE requires a data graph G and a relation
graph G′ from the input data and prior information, respec-
tively. The data graph G measures the intrinsic neighborhood
structure of the input data X , while the relation graph G′

stores the information of constraints from the given prior
information. We address the scalability issue by constructing
p-nearest neighbor data graphs to avoid complex dense graphs.
We also adopt a graph-sampling-based scalability strategy to
avoid objective optimization on large graphs.
Data graph construction. Considering a dataset X =
{x1,x2, ...,xn} with n data points, we construct a data graph
G = (V,E,W), where V = {v1, v2, ..., vn} is the set of
vertices corresponding to data points in X , E is the set of
edges connecting vertices, and W is the set of edge weights
measuring the similarities between data points. For two data
points xi,xj ∈ X , we measure their similarity Wij by
the radial basis function (RBF) kernel [30] or the cosine
similarity according to the requirements of different tasks. In
practice, we prefer a sparse data graph G which captures the
manifold structures in high-dimensional spaces and alleviates
the computational burden for the following clustering step. We
sparsify G into a p-nearest neighbor graph by NN-Descent
algorithm [31], an efficient algorithm for approximate nearest
neighbor graph construction suitable for large-scale datasets.
Relation graph construction. Prior information is provided in
the form of constraints for semi-supervised clustering. In this
work, we give a uniform formulation of widely used pairwise
and label constraints and store them in a relation graph. For a
dataset X associated with data graph G, we construct a relation
graph G′ = (V,E′,W′) using the provided constraints, where
G′ shares the same vertex set with G.

Pairwise constraints consist of a set of must-link constraints
M = {(xi,xj): li = lj} and a set of cannot-link constraints
C = {(xi,xj): li ̸= lj}. If there exists a pair of data points
(xi,xj) ∈ M , an edge exists in E′ with a positive value γM

added to the edge weight W′
ij . If there exists a pair of data

points (xi,xj) ∈ C, an edge exists in E′ with a negative value
γC added to the edge weight W′

ij . The parameters γM and
γC control the role of constraints and are set following Bai
et al. [3]. For a pair of data points (xi,xj) with similarity
Wij , we set γM = max (W) − Wij , where max (W) is
the maximum similarity among all pairs of data points. To
balance the influence of positive values and negative values in
G′ when the number of must-link constraints and cannot-link
constraints is not the same, we set γC = ρ(min (W)−Wij),
where ρ is the ratio between the number of positive values
and negative values in G′.

Label constraints consist of a set of positive constraints
P = {(xi, ym): xi ∈ ym} and a set of negative constraints
N = {(xi, ym): xi /∈ ym}. To form a uniform representation
of constraints, we convert label constraints into pairwise
constraints which are more compatible for SSSE. For two data
points xi and xj , the conversion rules are set as follows: (1)
If they have positive constraints with the same label, an edge
exists in E′ with a positive value γM added to the edge weight
W′

ij . (2) If they have positive constraints with different labels,
an edge exists in E′ with a negative value γC added to the edge
weight W′

ij . (3) If they have positive constraint and negative
constraint respectively with the same class label, the first data
point belongs to this class while the second does not. In that
case, an edge exists in E′ with a negative value γC added to
the edge weight W′

ij . Label constraints conversion tends to
generate a dense relation graph G′, where vertices with label
constraints connect to all other vertices with label constraints.
To avoid a complex dense relation graph, we only retain two
positive and two negative edges at most for each vertex in G′

when performing constraints conversion.
Neighborhood-preserving graph sampling strategy. To
achieve scalable semi-supervised clustering, we adopt a
sampling-based scalability strategy (Fig. 1) that avoids SSSE
from objective optimization on large graphs. After constructing
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Fig. 3. Neighborhood-preserving graph sampling strategy. We randomly select
a set of seed vertices and extend the set according to the neighbor vertices of
its belonged vertices.

the data graph, we sample it into a set of subgraphs and
perform semi-supervised clustering on these subgraphs. Clus-
ters from subgraphs shrink into data points, which decreases
the size of the graph. This graph sampling step improves
the scalability of SSSE. However, a simple random graph
sampling will break the nearest-neighbor structure in the data
graph thus impeding the performance of SSSE. Motivated
by previous research [32] that notices the importance of
the local neighborhood structure of graphs, we propose a
neighborhood-preserving graph sampling strategy, as shown
in Fig. 3. This sampling strategy produces smaller subgraphs
and preserves the intrinsic neighborhood structure of graphs at
the same time. The experimental results in Fig. 4 show that our
proposed sampling strategy significantly outperforms random
graph sampling.

Specifically, given a whole data graph Ĝ with an associated
relation graph Ĝ′, we randomly select nseed sampling center
vertices as the sampling seeds stored in the current selected
vertex set Sselect. For each selected vertex, we extend to its
p nearest neighbor vertices according to Ĝ. This extension
step is conducted until the size of Sselect reaches a sampling
size threshold ns. We sample a list of vertex sets without
replacement, and the remaining vertices in Ĝ are allocated
to the final vertex set. Each vertex set corresponds to a data
subgraph G and a relation subgraph G′ from Ĝ and Ĝ′,
respectively. These subgraphs are utilized to form clusters
via objective optimization. There are chances that conflicts
exist between constraints in Ĝ′ and the graph sampling output.
For instance, two vertices with a must-link constraint might
be sampled into different subgraphs. This makes constraints
ineffective in the current round. However, these constraints
can become effective in the following rounds when Ĝ′ is
updated and vertices with constraints are sampled into the
same subgraph.

B. 2-D SSSE

The 2-D structural entropy of a graph represents the
lowest possible structural entropy achievable through graph
partitioning. Consequently, it can be effectively utilized for
partitioning clustering. In our previous work [23], we propose
2-D SSE based on 2-D structural entropy for semi-supervised
partitioning clustering. In this subsection, we further address
the scalability issue and present 2-D SSSE for scalable semi-
supervised partitioning clustering. We achieve this by propos-

ing a 2-D structural entropy-based objective function and the
corresponding scalable optimization algorithm.

Given a dataset X at the size of n, we construct a data
graph Ĝ and a relation graph Ĝ′, and sample Ĝ into a list of
subgraphs as described in Section III-A. We perform clustering
on these subgraphs and insert the obtained clusters as new data
points back into Ĝ and Ĝ′. Suppose we obtain a data subgraph
G containing ns vertices along with a relation subgraph G′

via graph sampling, we intend to perform semi-supervised
partitioning clustering on these two graphs. To integrate the
given constraints into the clustering procedure, we propose a
regularization term defined on these two graphs. The objective
function of 2-D SSSE on G and G′ is defined as follows:

LP(G,G′) = HP(G) + ϕEP(G,G′), (4)

where HP(G) is the 2-D structural entropy defined in Eq.
(3) and EP(G,G′) is the regularization term for constraints
violation, which is defined as follows:

EP(G,G′) = −
∑
X∈P

g′X
VG

log2
VX

VG
, (5)

where g′X is the sum of edge weights in G′ between vertices
in and not in partition X , and other notations share the same
meaning with notations in Eq. (3).

The intuition of the regularization term is that we modify
gX , i.e., the cut of module X in Eq. (3) according to the
constraints, which is increased when must-link constraints
are violated, and decreased when cannot-link constraints are
satisfied. A positive value of W′

ij in G′ means vi and vj
should belong to the same partition, and EP > 0 if they are
not, leading to a penalty added to LP . A negative value of W′

ij

in G′ means vi and vj should belong to different partition, and
EP < 0 if they are, leading to a reward added to LP . When no
constraint exists, i.e., EP = 0, we only minimize unsupervised
2-D structural entropy. In all, EP penalizes modules that
violate must-link constraints and rewards modules that satisfy
cannot-link constraints.
Minimizing 2-D SSSE objective. Given a data subgraph G
and a relation subgraph G′, we minimize 2-D SSSE objective
defined by Eq. (4) via two operators merging [24] and moving
on the encoding tree T . The operator merging seeks to union
vertex subsets of two sister nodes and delete one node. For
two sister nodes α, β ∈ T with associated vertex subsets X
and Y , the operator merging is defined as: (1) set X = X∪Y ,
(2) delete β. The decrease amount of LP(G,G′) is given by:

∆LM
X,Y =

1

VG
[(VX − gX − g′X) log2 VX

+(VY − gY − g′Y ) log2 VY

− (VX∪Y − gX∪Y − g′X∪Y ) log2 VX∪Y

+(gX + gY − gX∪Y + g′X + g′Y − g′X∪Y ) log2 VG],

(6)

where M denotes the operator merging , VX is the volume of
X in G, VG is the volume of G, gX and g′X are the cuts of X
in G and G′, respectively. The operator moving aims to find
a better module for a vertex by moving the vertex from one
module to another. For a node α ∈ T with associated module
X and a vertex vi ∈ X , a target node β ∈ T with associated
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Algorithm 1 Algorithm to Minimize Objective Eq. (4)
Input: G = (V,E,W), G′ = (V,E′,W′)
Output: Encoding tree T and partitioning P

1: Initialize T containing all vertices as tree leaves
2: // Merging stage
3: repeat
4: Merge a chosen module pair (X,Y ) into X ∪ Y

condition on argmaxX,Y {∆LM
X,Y } via Eq. (6)

5: Update ∆LM for module pairs connected to X or Y
6: until ∆LM < 0 for all module pairs
7: // Moving stage
8: repeat
9: for each vertex vi ∈ V do

10: Remove vertex vi from the original module X
11: Insert node vi into the module Y condition on

argmaxY {∆LR
X,vi

−∆LI
Y,vi

} via Eqs. (7) and (8)
12: end for
13: until LP(G,G′) does not decrease in current iteration

module Y is found, where Y connects to vi by edges in G, the
moving operator is defined as: (1) remove vi from X , (2) insert
vi from Y . The decrease amount of LP(G,G′) by removing
vi from X is given by:

∆LR
X,vi

=
VX − gX − g′X

VG
log2

VX

VG

−
VX\{vi} − gX\{vi} − g′X\{vi}

VG
log2

VX\{vi}

VG
,

(7)

where R denotes vertex removing and X\{vi} denotes re-
moving vertex vi from X . The increase amount of LP(G,G′)
by inserting vi into Y is given by:

∆LI
Y,vi = −VY − gY − g′Y

VG
log2

VY

VG

+
VY ∪{vi} − gY ∪{vi} − g′Y ∪{vi}

VG
log2

VY ∪{vi}

VG
,

(8)

where I denotes vertex inserting and Y ∪ {vi} denotes
inserting vi into Y . We initialize T to contain a root node λ
and n leaves where each leaf is associated with one vertex in
G, and then sequentially apply merging and moving operators
until convergence. The optimization procedure is summarized
in Algorithm 1.
Complexity analysis. For a subgraph G with ns vertices, the
time complexity of merging stage is O(nslog

2 ns) [24]. In
the moving stage, each iteration requires calculating ∆LR

X,vi

and ∆LI
Y,vi

for every vertex vi and every possible module
Y , which takes the time of O(nsl). Taken together, the time
complexity of Algorithm 1 is O(ns log

2 ns + nslt), where l
and t denote the number of vertices, clusters, and iterations
respectively. For a dataset X with n data points and l classes,
the whole data graph will be separated into ⌊n/ns⌋ subgraphs,
which will give ⌈nl/ns⌉ vertices in the remaining data graph
after a round of clustering. The remaining graph will be
separated into ⌊nl/n2

s⌋ subgraphs. In all, 2-D SSSE requires
running Algorithm 1 ⌊n/(ns − l)⌋ times, and the total time
complexity is O((nns log

2 ns+nnslt)/(ns− l)). Considering

that ns ≫ l for most datasets, the time complexity of 2-D
SSSE is O(n log2 ns + nlt), which is approximately linear to
the number of data points.

C. High-D SSSE

The high-D structural entropy of a graph represents the
lowest possible structural entropy given by a hierarchical
encoding tree. Hierarchical clustering can be achieved by high-
D structural entropy minimization [28]. In our previous work
[23], we propose high-D SSE based on high-D structural
entropy for semi-supervised hierarchical clustering. In this
subsection, we present the high-D SSSE for scalable hierarchi-
cal clustering via the graph sampling-based scalability strategy.
This is achieved by extending the objective function of the 2-D
SSSE and proposing the corresponding scalable optimization
algorithm.

Given a dataset X along with the constructed data graph Ĝ
and relation graph Ĝ′, we sample Ĝ into a list of subgraphs as
described in Section III-A. We apply the stretching operator
to achieve binary hierarchical clustering and then apply the
compressing operator to obtain clusters. These clusters are in-
serted back into Ĝ and Ĝ′ as new data points for the following
hierarchical clustering. For a data subgraph G containing ns

vertices and the corresponding relation subgraph G′ via graph
sampling, we intend to perform semi-supervised hierarchical
clustering on these two graphs. Following the objective of 2-D
SSSE defined in Eq (4) where the constraints are applied on
all modules, the high-D SSSE objective applies constraints on
all internal tree nodes in T , i.e., tree nodes except for the root
node and tree leaves in T . The objective function is defined
as follows:

LT (G,G′) = HT (G) + ϕET (G,G′), (9)

where ET (G,G′) is a regularization term for constraints
violation, and it is defined as:

ET (G,G′) =
∑

α∈T ,1<|T (α)|<|V |

− g′α
VG

log2
Vα

Vα−
, (10)

where g′α is the cut of α in G′, |T (α)| is the number of
vertices in subset T (α) associating to α, and other notations
share the same meaning with notations in Eq. (1). For each
internal node in T , the penalty term penalizes the violation of
must-link constraints and rewards the satisfaction of cannot-
link constraints.
Minimizing high-D SSSE objective. Given a data subgraph
G and a relation subgraph G′, we minimize high-D SSSE
objective defined by Eq. (9) via two operators stretching
and compressing on the encoding tree T [28]. The operator
stretching seeks to stretch the encoding tree by adding a parent
node above a pair of sister nodes. For a pair of sister nodes
(α, β) ∈ T whose parent is γ, node stretching is defined as
inserting a new node δ between γ and (α, β), i.e., (1) set
α− = δ, (2) set β− = δ, (3) set δ− = γ. The decrease
amount of LT (G,G′) is given by:

∆LS
α,β =

gα + gβ − gδ + g′α + g′β − g′δ
VG

log2
Vγ

Vδ
, (11)
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Algorithm 2 Algorithm to Minimize Objective Eq. (9)
Input: G = (V,E,W), G′ = (V,E′,W′), height K
Output: Binary tree Tb and height K tree TK

1: Initialize T with a root node λ and all vertices as tree
leaves

2: // Stretching stage
3: repeat
4: Stretch a chosen node pair {α, β} condition on

argmaxα,β{∆LS
α,β} via Eq. (11)

5: Update ∆LS for node pairs connected to α or β
6: until The children number of λ is two, resulting in binary

tree Tb
7: // Compressing stage
8: repeat
9: Remove a chosen tree node α ∈ T condition on

argmaxα{∆LC
α} via Eq. (12)

10: until Height of encoding tree T is not larger than K,
resulting in TK

where S denotes node stretching . Applying stretching on the
initial encoding tree iteratively results in a binary encoding
tree Tb. The operator compressing aims to restrict the height
of the encoding tree by deleting certain internal tree nodes.
For a node α ∈ T contains a set of children {β1, ..., βm} and
its parent is γ, node compressing is defined as: (1) remove
node α, (2) for each child node βi of α, set β−

i = γ. The
decrease amount of LT (G,G′) is given by:

∆LC
α =

∑
i

gβi +
∑

|T (βi)|>1

g′βi
− gα − g′α

VG
log2

Vα

Vγ
, (12)

where C denotes node compressing . Applying compressing
on the binary encoding tree results in a multinary encoding
tree. By restricting the height of the encoding tree to be less
than the required height K, we can obtain the K-D encoding
tree. We summarize this optimization procedure in Algorithm
2. We apply Compressing until K = 2, where the clusters
shrink into new vertices for the following graph sampling
step. For a graph G with ns vertices and ms edges, the
time complexity of Algorithm 2 is O(hmax(mslogns + ns)),
where hmax is the height of Tb. For a dataset X with
n data points and l classes, high-d SSSE requires running
Algorithm 2 ⌊n/(ns− l)⌋ times, and the total time complexity
is O(nhmax(mslogns + ns)/(ns − l)).

D. Limitation

Although the graph sampling-based scalability strategy
provides SSSE the ability to achieve efficient clustering
on datasets at large scales, this strategy inevitably brings
in the loss of clustering accuracy. Despite the proposed
neighborhood-preserving graph sampling strategy better pre-
serves the intrinsic neighborhood structure of graphs which
alleviates the loss of clustering accuracy, minimizing Eq. (4)
and Eq. (9) on subgraphs rather than the whole graphs leads
to local optimal clustering, and the performance varies with
different sampling results.

TABLE I
DESCRIPTION OF DATASETS AT DIFFERENT SCALES.

Scale Dataset #Data points #Features #Classes

Small

Yale [33] 165 1024 15
Wine [34] 178 13 3
ORL [33] 400 1024 40

Australian [34] 690 14 2
Isolet [33] 1,560 617 26

Medium COIL100 [33] 7,200 7200 100
USPS [33] 9,298 256 10

Large MNIST [33] 70,000 784 10
EMNIST [35] 131,600 784 47

IV. EXPERIMENTS

Our proposed SSSE algorithm is capable of tackling both
semi-supervised partitioning and hierarchical clustering. Re-
garding the evaluation of both tasks, we design two groups of
experiments, in which we compare SSSE against baselines for
semi-supervised partitioning clustering (Sec. IV-A) and semi-
supervised hierarchical clustering (Sec. IV-B). We conduct
experiments on 9 widely used real-world clustering datasets
divided into three groups: small datasets (Yale, Wine, ORL,
Australian, Isolet), Medium datasets (COIL100, USPS), and
Large datasets (MNIST, EMNIST). The details of the above
datasets are summarized in Table I.

A. Semi-Supervised Partitioning Clustering

In this part, we evaluate the performance of SSSE on semi-
supervised partitioning clustering. We adopt three commonly
used clustering metrics, Adjusted Rand Index (ARI), Nor-
malized Mutual Information (NMI), and Clustering Accuracy
(ACC), for performance evaluation. We compare SSSE with
several unsupervised clustering methods (GBSC [36], U-SPEC
[37], U-SENC [37], SE [24]), several semi-supervised cluster-
ing methods with pairwise constraints (PCPSNMF [38], On-
eStepPCP [39], CMS [9]), several semi-supervised clustering
methods with label constraints (Seeded-KMeans [1], S4NMF
[40] , and one method with both pairwise and label constraints
(SC-MPI [3]).
Implementation Details. For a given dataset X with n data
points divided into k clusters according to the ground truth,
we construct the data graph G as a p-nearest neighbor graph
and set p as ⌊20k/ log22 n⌋ + 1, since the number of clusters
by minimizing HP is approximate Θ(p log22 n) [24]. The
similarity measure used for graph construction is the RBF
kernel-based similarity, and the kernel width is empirically set
to be σ2 = 50. The number of sampling seeds is empirically
set to be nseed = 10 and the sampling size is empirically set
to be ns = 1000. For medium and large datasets utilizing
graph sampling, we set p as ⌊20k/ log22 ns⌋ + 1 since the
objective optimization is performed on sampled subgraphs.
We generate constraints using the ground truth class labels
from each dataset. For the group of methods with pairwise
constraints, we set the number of must-link constraints the
same as cannot-link constraints to be 0.2n. For the group of
methods with label constraints, we set the number of positive
constraints the same as negative constraints to be 0.1n. The
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TABLE II
PERFORMANCE OF METHODS FOR SEMI-SUPERVISED PARTITIONING CLUSTERING ON CLUSTERING DATASETS. BOLD: THE BEST PERFORMANCE ON

EACH GROUP OF METHODS. OOM: OUT-OF-MEMORY ERROR. N/A: RUNNING TIME LONGER THAN 2 HOURS.

Metric Cat. Method(%) Yale ORL Isolet COIL100 USPS MNIST EMNIST

ARI

U
ns

up
. GBSC 12.30±1.47 09.24±02.63 15.57±07.67 23.85±0.53 28.01±0.05 22.31±1.87 OOM

U-SPEC 29.51±1.50 54.70±1.03 55.41±2.66 52.91±1.63 64.67±0.28 58.83±3.79 22.90±0.51

U-SENC 31.89±2.73 54.24±1.45 57.42±1.85 51.82±1.29 73.11±5.92 68.07±1.98 26.33±0.42

SE 34.32±0.00 53.56±0.00 59.13±0.00 58.75±0.00 65.28±0.00 N/A N/A

Pa
ir

w
is

e PCPSNMF 26.03±3.19 50.47±4.49 38.75±7.69 OOM OOM OOM OOM
OneStepPCP 25.45±0.84 39.81±3.46 50.86±2.10 23.61±1.88 68.43±4.12 N/A N/A
CMS 06.60±2.12 28.34±5.16 49.15±1.59 29.07±1.64 72.49±2.95 N/A N/A
SC-MPI 31.39±2.30 52.53±6.14 46.06±4.77 56.75±2.50 21.70±4.84 OOM OOM
SSSE (Ours) 40.68±4.11 56.28±1.16 63.31±1.30 70.94±0.44 69.95±1.32 74.55±3.41 25.35±1.62

L
ab

el

Seeded KMeans 24.30±2.22 46.13±2.62 64.88±1.70 54.69±1.59 57.22±0.05 40.97±2.01 17.61±0.21

S4NMF 24.49±0.81 47.05±1.66 58.79±1.61 49.89±0.51 66.58±4.89 OOM OOM
SC-MPI 22.37±5.03 26.00±2.42 63.46±1.32 73.09±1.13 90.41±0.66 OOM OOM
SSSE (Ours) 34.61±2.05 53.99±0.93 60.71±0.76 66.64±1.13 68.97±2.67 76.07±2.07 24.97±1.65

NMI

U
ns

up
. GBSC 38.34±2.10 48.72±3.88 43.63±0.74 62.61±0.23 43.45±0.09 36.07±2.28 OOM

U-SPEC 55.61±1.29 83.28±0.20 79.35±1.33 80.57±0.52 77.84±0.26 68.84±1.74 46.66±0.31

U-SENC 57.32±1.65 83.23±0.67 79.21±0.90 78.80±0.49 82.02±1.90 75.79±1.26 50.47±0.48

SE 60.87±0.00 86.38±0.00 82.74±0.00 87.79±0.00 73.67±0.00 N/A N/A

Pa
ir

w
is

e PCPSNMF 55.36±1.58 81.42±1.73 68.72±4.23 OOM OOM OOM OOM
OneStepPCP 52.05±0.80 77.83±0.73 76.85±1.17 71.81±0.80 81.75±0.70 N/A N/A
CMS 34.37±3.04 73.30±3.01 77.07±1.01 70.42±0.44 78.26±1.21 N/A N/A
SC-MPI 60.15±1.82 83.45±1.95 72.47±2.84 85.40±1.03 37.56±5.72 OOM OOM
SSSE (Ours) 65.41±2.21 87.00±0.34 83.36±0.79 91.01±0.11 77.61±0.83 77.59±1.60 50.61±0.63

L
ab

el

Seeded KMeans 51.36±1.98 78.39±1.11 80.29±0.93 80.30±0.54 63.57±0.04 51.69±1.88 41.28±0.15

S4NMF 50.16±0.98 76.95±0.98 78.18±0.93 78.45±0.25 74.73±3.23 OOM OOM
SC-MPI 51.91±3.59 69.97±1.27 80.00±0.56 89.23±0.43 88.01±0.66 OOM OOM
SSSE (Ours) 61.52±1.45 86.47±0.25 83.08±0.32 89.94±0.23 76.95±1.26 78.19±1.03 50.67±0.71

ACC

U
ns

up
. GBSC 12.63±1.21 09.75±2.03 14.70±1.00 23.72±0.39 27.07±2.77 22.95±0.08 OOM

U-SPEC 48.12±2.29 66.15±1.53 62.59±2.16 58.25±2.21 67.68±4.85 69.84±2.53 37.84±1.17

U-SENC 50.49±2.97 67.18±1.45 63.85±2.14 56.97±0.97 77.90±5.75 75.97±2.86 41.15±0.71

SE 57.58±0.00 54.00±0.00 61.73±0.00 67.68±0.00 60.62±0.00 N/A N/A

Pa
ir

w
is

e PCPSNMF 49.70±3.78 63.68±3.51 51.17±2.65 OOM OOM OOM OOM
OneStepPCP 47.33±1.75 57.28±2.55 57.50±2.17 38.84±1.96 66.90±2.15 N/A N/A
CMS 28.67±2.36 49.35±1.89 53.67±2.36 33.20±1.74 75.67±1.54 N/A N/A
SC-MPI 50.73±5.17 66.43±4.52 55.12±7.37 59.56±2.59 37.22±2.63 OOM OOM
SSSE (Ours) 59.88±2.23 69.33±0.87 64.67±1.96 76.65±1.31 78.66±2.47 84.32±3.87 41.54±1.64

L
ab

el

Seeded KMeans 45.76±3.58 62.53±1.92 74.63±1.88 62.14±0.83 75.00±0.03 59.93±1.71 33.350.43
S4NMF 43.77±1.59 60.45±1.70 68.89±1.22 56.65±0.75 72.16±2.56 OOM OOM
SC-MPI 46.42±2.36 48.88±2.32 76.92±1.18 83.53±0.83 95.02±0.29 OOM OOM
SSSE (Ours) 57.94±2.77 68.38±0.98 62.53±1.51 76.02±1.32 78.75±2.09 82.48±3.10 41.85±1.34

parameter ϕ in Eq. (4) is simply set as ϕ = 1. For all baselines,
we obtain the source codes from the official implementation in
the author’s websites. The parameters are set according to the
original paper or the official implementations. The experiments
are conducted 10 times on one server with two Intel(R) 2.30
GHz CPUs and 500 GB RAM. More detailed information
about the experimental setup can be found in the Appendix.
The codes for all baseline models and SSSE, along with all
datasets, are publicly accessible on GitHub1.
Experimental Results. In Table II, we show the perfor-
mance of methods for partitioning clustering on 7 real-world
clustering datasets. We compare SSSE with three groups of
methods, i.e., the unsupervised clustering group, the semi-
supervised clustering with pairwise constraints group, and
the semi-supervised clustering with label constraints. SSSE
outperforms its unsupervised baseline SE and achieves the best
performance among most datasets in all three groups. Specif-

1https://github.com/SELGroup/SSSE

ically, for the three small datasets, SSSE achieves the best
performance in all three groups, except for SSSE with label
constraints on the ORL dataset, which achieves comparable
ARI values but significantly higher NMI and ACC values than
U-SPEC and U-SENC. For the two medium datasets, SSSE
achieves the best performance on the COIL100 dataset and
achieves the second-best performance on the USPS dataset.
The sampling-based scalability strategy boosts the efficiency
and scalability of SSSE on these datasets but inevitably
sacrifices the clustering accuracy. For the two large datasets,
SE and most semi-supervised clustering methods fail to give
the clustering results owing to high time or space complexity.
SSSE outperforms scalable unsupervised clustering methods
and Seeded KMeans on these two datasets. In addition, we find
that for datasets ORL and USPS, the unsupervised methods U-
SPEC and U-SENC achieve promising performance and out-
perform many semi-supervised clustering methods. However,
the performance of most semi-supervised methods, including
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TABLE III
PERFORMANCE (DP) OF METHODS FOR SEMI-SUPERVISED HIERARCHICAL CLUSTERING ON CLUSTERING DATASETS. BOLD: THE BEST PERFORMANCE .

Method(%) Yale Wine ORL Australian Isolet COIL100 USPS MNIST EMNIST

SpecWRSC 47.25±1.33 87.48±0.79 OOM 65.61±1.24 OOM OOM OOM OOM OOM
SE 40.03±1.28 86.23±0.43 58.74±2.00 55.17±0.70 41.39±0.67 67.41±1.51 46.73±3.91 N/A N/A
SEscalable 39.63±1.43 86.61±0.65 56.84±1.76 55.08±1.00 40.70±1.14 61.71±1.97 53.85±2.34 28.59±3.52 07.31±0.54

COBRA 24.36±1.80 75.67±11.78 24.30±1.88 63.85±4.25 49.98±3.70 17.26±1.44 57.63±5.79 40.89±2.79 N/A
Semi-Multicons 32.70±2.91 89.02±7.61 23.55±1.66 69.71±2.41 N/A N/A N/A N/A N/A
SSSE (Ours) 44.83±1.85 92.15±1.00 62.98±1.78 71.87±1.61 48.17±1.71 62.08±1.64 61.05±3.06 33.39±3.12 07.56±0.58

(a) (b) (c) (d) (e)

Neighborhood-preserving graph sampling Random graph samplingNo sampling

N
/A

N
/A

N
/A

N
/A

N
/A

Fig. 4. Performance of SSSE with no sampling, our neighborhood-preserving graph sampling strategy and random sampling strategy. (a) and (b): ARI and
NMI values of SSSE results for semi-supervised partitioning clustering with pairwise constraints. (c) and (d): ARI and NMI values for semi-supervised
partitioning clustering with label constraints. (e): DP values for semi-supervised hierarchical clustering with pairwise constraints.

SSSE, increases along with more constraints. Semi-supervised
methods potentially outperform unsupervised methods when
more constraints are given. We also find that the unsupervised
version SE, which minimizes structural entropy only without
prior information, achieves quite high performance, which
contributes to the superior performance of SSSE. Comparing
SSSE with different constraints, SSSE with label constraints
underperforms compared to SSSE with pairwise constraints
in most cases. Furthermore, SSSE with label constraints only
outperforms its baseline SE by a small margin in some cases.
This suggests that the constraint conversion and relation graph
sparsification retain only a portion of the prior information. In
all, SSSE effectively integrates prior information of pairwise
and label constraints, and efficiently outputs clustering results
with high accuracy for datasets at different scales.

B. Semi-Supervised Hierarchical Clustering

In this part, we evaluate the performance of SSSE on semi-
supervised hierarchical clustering. We adopt a widely used
hierarchical clustering metric Dendrogram Purity (DP) [41]
for performance evaluation. DP is a holistic measure of a
cluster tree, which is defined as the average purity score of
ancestors of all leaf pairs with the same ground truth labels. We
compare SSSE with three unsupervised hierarchical clustering
methods (SpecWRSC [42], SE [24], and SEscalable) and two
semi-supervised hierarchical clustering methods (COBRA [17]
and Semi-Multicons [43]).
Implementation Details. For a given dataset X with n data
points, we construct a p-nearest neighbor graph using cosine
similarity and empirically set p = 7. The number of sampling
seeds is empirically set to be nseed = 10 and the sampling
size is set to be ns = 1000. We generate constraints using
the ground truth class labels from each dataset. We generate
0.2n must-link constraints and 0.2n cannot-link constraints
randomly for semi-supervised clustering methods. We simply
set ϕ = 1. The experiments are conducted 10 times on a server
with two Intel(R) 2.30 GHz CPUs and 500 GB RAM.

Experimental Results. In Table III, we show the performance
of methods for hierarchical clustering on 9 clustering datasets.
SSSE achieves the best or second-best performance on all
datasets. In particular, SpecWRSC and Semi-Multicons are
not able to work on most datasets since they have high
space complexity and time complexity, respectively. COBRA
achieves comparable performance to SSSE on two datasets.
However, it still can not tackle the largest dataset EMNIST,
making it inferior to SSSE at scalability. COBRA and Semi-
Multicons underperform compared to SSSE on most datasets
because they fail to fully capture the hierarchical structure of
the datasets. Specifically, COBRA builds cluster trees based
on super-instances via the KMeans algorithm, where each
super-instance contains several data points. The hierarchical
structures of data points within super-instances are under-
captured. Semi-Multicons, on the other hand, generates cluster
trees at a given height and cannot accommodate a large height
value. The tree node usually contains many children nodes,
making the hierarchical structures of children nodes under-
captured. In all, SSSE achieves high accuracy and scalability
at semi-supervised hierarchical clustering.

C. Further Analysis

Ablation study on sampling strategy. The graph sampling
strategy improves the scalability of SSSE but inevitably
sacrifices the performance. We propose the neighborhood-
preserving graph sampling strategy to preserve the intrin-
sic neighborhood structure of the data graph. To verify the
effectiveness of this strategy, we evaluate the performance
of SSSE without sampling, with our sampling strategy, and
with the random sampling strategy, as shown in Fig. 4. We
conduct experiments on three datasets for three tasks: semi-
supervised partitioning clustering with pairwise constraints,
semi-supervised partitioning clustering with label constraints,
and semi-supervised hierarchical clustering with pairwise con-
straints. We observe that our proposed sampling strategy
greatly improves the performance of SSSE on all datasets for
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USPS MNISTYale ORL Isolet COIL100

Fig. 5. Performance of SSSE for semi-supervised clustering with different pairwise constraint amounts. First row: semi-supervised partitioning clustering.
Second row: semi-supervised hierarchical clustering.

TABLE IV
TIME COSTS(S) OF METHODS FOR PARTITIONING CLUSTERING ON SEVEN CLUSTERING DATASETS. BOLD: THE BEST PERFORMANCE.

Cat. Method Yale ORL Isolet COIL100 USPS MNIST EMNIST

U
ns

up
. GBSC 0.08±0.02 0.19±0.00 2.32±0.06 46.81±0.13 73.26±0.20 4547.45±290.70 OOM

U-SPEC 0.21±0.25 0.30±0.03 0.89±0.63 3.56±0.27 1.75±0.09 6.65±0.44 24.30±3.02

U-SENC 1.93±0.49 4.59±0.19 14.11±0.43 49.56±3.61 29.25±0.15 108.84±2.44 332.27±144.36

SE 1.73±4.21 0.52±0.06 4.67±4.14 32.10±2.50 569.47±199.18 N/A N/A

Pa
ir

w
is

e PCPSNMF 0.46±0.13 4.83±0.95 119.41±39.12 OOM OOM OOM OOM
OneStepPCP 1.25±0.67 4.71±0.06 61.331.23 4266.46±328.83 9997.89±645.90 N/A N/A
CMS 9.39±1.70 47.15±1.17 448.56±8,86 16924.96±255.02 10644.05±366.79 N/A N/A
SC-MPI 0.16±0.36 0.12±0.01 1.37±0.52 37.82±10.08 106.31±1.38 OOM OOM
SSSE (Ours) 1.67±4.09 0.63±0.05 6.54±4.24 31.36±5.40 39.31±1.55 209.09±32.00 399.03±30.32

L
ab

el

Seeded KMeans 0.04±0.03 0.05±0.01 0.05±0.05 1.39±0.33 0.26±0.13 5.87±0.79 12.47±3.93

S4NMF 57.84±10.31 75.36±1.58 172.26±0.65 4119.54±2.52 5184.86±0.44 N/A N/A
SC-MPI 0.09±0.02 0.09±0.00 0.32±0.03 8.38±0.19 8.49±0.36 OOM OOM
SSSE (Ours) 2.82±7.30 0.67±0.10 6.06±4.24 23.97±4.25 21.72±1.47 216.95±6.32 402.13±26.74

TABLE V
TIME COSTS(S) OF METHODS FOR HIERARCHICAL CLUSTERING ON NINE CLUSTERING DATASETS. BOLD: THE BEST PERFORMANCE.

Method Yale Wine ORL Australian Isolet COIL100 USPS MNIST EMNIST

SpecWRSC 3.55±4.13 1.93±4.29 OOM 5.66±4.19 OOM OOM OOM OOM OOM
SE 1.56±4.19 1.70±4.15 0.34±0.05 10.52±0.35 5.69±0.29 32.80±0.52 286.7±10.0 N/A N/A
SEscalable 1.71±4.20 1.72±4.25 0.67±0.10 10.40±0.19 5.39±0.17 10.57±0.72 19.69±2.30 359.47±27.58 555.36±37.27

COBRA 1.98±0.45 0.19±0.00 3.80±0.70 1.31±0.11 7.91±0.46 309.0±37.4 473.2±60.3 5104±2111 N/A
Semi-Multicons 876±41 138.9±10.8 5404±1275 2124±106 N/A N/A N/A N/A N/A
SSSE (Ours) 1.54±4.18 1.75±4.26 0.33±0.05 12.60±4.22 6.73±4.54 5.27±15.00 8.22±1.11 270.40±67.43 555.01±43.67

COIL100 USPS MNIST

(1000, 70.65)

(1000, 90.89) (1000, 77.34)
(1000, 69.80)

(1000, 78.08)
(1000, 75.58)

(500, 90.89) (1500, 59.23)
(2000, 34.30)

Fig. 6. Performance of SSSE with pairwise constraints at different sampling
sizes. First row: semi-supervised partitioning clustering. Second row: semi-
supervised hierarchical clustering.

all tasks compared to the random sampling strategy. Specifi-
cally, ARI values are nearly 0 on the COIL100 and MNIST
datasets with the random sampling strategy. We also find
that although our proposed sampling strategy demonstrates a
performance largely comparable to the no sampling version of

SSSE, i.e., SSE in our conference paper [23], it does exhibit a
slight decrease in performance, particularly in semi-supervised
hierarchical clustering. In all, our proposed neighborhood-
preserving graph sampling strategy effectively preserves the
intrinsic neighborhood structure of the data graph and greatly
boosts the performance of SSSE compared to the random
sampling strategy.

Constraints number. The number of constraints is known to
have a great impact on the performance of semi-supervised
clustering methods. We evaluate the performance of SSSE
with different amounts of constraints for three tasks, which are
presented in Fig. 5. The performance of SSSE is higher with
more constraints on most datasets, indicating that constraints
are properly integrated into SSSE. Specifically, for three small
datasets, the performance of SSSE witnesses a clear increase
with larger constraint amounts on all three tasks. For the other
three datasets, the graph sampling step weakens the effect
of constraints since only a small proportion of edges in the
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relation graph G′ are selected in the first round of sampling.
However, the performance of SSSE still witnesses a trend
of increase with a larger amount of constraints, especially
for semi-supervised hierarchical clustering on the USPS and
MNIST datasets.
Sampling size. We analyze the effect of sampling size ns

on the performance of SSSE for the tasks of semi-supervised
partitioning and hierarchical clustering, which are shown in
Fig. 6. With some exceptions, the performance of SSSE is
usually higher when the sampling size ns is larger, which
indicates that larger ns helps preserve more graph structure in
sampled subgraphs. However, a large ns leads to large time
and space complexity, which decreases the scalability of SSSE.
We find that ns = 1000 is a good choice for SSSE.
Efficiency. We show the time costs of methods for semi-
supervised partitioning and hierarchical clustering in Table
IV and Table V, respectively. For the task of partitioning
clustering, the time cost of SSSE is comparable to three
scalable unsupervised clustering methods, and even lower than
GBSC on medium and large datasets. Specifically, in the
group of methods with pairwise constraints, the time cost of
SSSE is lowest on medium and large datasets. In the group
of methods with label constraints, SSSE along with Seeded
KMeans are the only two methods able to tackle the largest
dataset EMNIST. For the task of hierarchical clustering, the
time cost of SSSE is the lowest on most datasets. In all,
SSSE is a scalable method with high efficiency, especially
for medium and large datasets.

V. APPLICATION: SEMI-SUPERVISED CLUSTERING OF
BIOLOGICAL DATA AT DIFFERENT SCALES

We investigate the functionality of SSSE for semi-
supervised clustering of biological data at different scales. We
evaluate the performance of SSSE on single-cell RNA-seq
data, the most used data for cell type determination. Semi-
supervised clustering algorithms provide the possibility for
utilizing additional biological prior information such as marker
genes for higher cell type identification performance [5]. We
conduct experiments on 7 datasets divided into three groups:
small datasets (10X PBMC, Mouse bladder, Human kidney),
medium datasets (Human liver, CITE PBMC, Baron(human)),
and a large dataset (Karagiannis), containing cells ranging
from 2100 to 72914. Among them, three small datasets are
derived from Tian et al. [5], which were preprocessed by the
authors to contain 2100 randomly sampled cells. We retain the
data with the top 2000 genes for all datasets to eliminate the
interference of less expressed irrelevant genes. We compare
SSSE with partitioning clustering baselines, including several
scalable unsupervised clustering methods (GBSC [36], U-
SPEC [37], U-SENC [37], SEscalable), several semi-supervised
clustering methods with pairwise constraints (PCPSNMF [38],
OneStepPCP [39], CMS [9]), several semi-supervised clus-
tering methods with label constraints (Seeded-KMeans [1],
S4NMF [40], and one semi-supervised clustering method with
both pairwise and label constraints (SC-MPI [3]). Unlike the
experiments in Sec. IV-A, we adopt the cosine similarity for
RNA-seq datasets since the features of these datasets are

sparse. All other parameters and experimental settings are the
same as in Sec. IV-A.
Performance evaluation. In Table VI, we show the perfor-
mance of methods for partitioning clustering on single-cell
RNA-seq datasets. The experimental results are compared
separately in three groups. SSSE achieves the best perfor-
mance on most datasets among methods in all three groups,
demonstrating the functionality of SSSE for semi-supervised
clustering of RNA-seq data. Meanwhile, SSSE outperforms
the unsupervised method SEscalable on all datasets, indicating
that constraints boost clustering accuracy by being effectively
integrated into SSSE. For three small datasets, we observe that
SSSE achieves the best performance in all three groups. For
the other four datasets, the performance of SSSE sacrifices for
scalability and efficiency through graph sampling. However,
SSSE still achieves the best performance on three datasets
and achieves comparable performance on the Baron(human)
dataset. Moreover, most semi-supervised clustering methods
are unable to tackle the large dataset Karagiannis due to high
time or space complexity. In all, SSSE effectively performs
semi-supervised partitioning clustering on single-cell RNA-seq
datasets with high accuracy.

To further analyze the performance of SSSE on biological
data, we visualize six RNA-seq datasets along with the clus-
tering results, as shown in Fig. 7. For each dataset, We build
a data graph G used in SSSE and utilize the spring embedder
by the Fruchterman-Reginold force-directed algorithm [44] to
calculate the positions of vertices in G. The colors of points
represent the ground truth labels (first row in Fig. 7), predicted
labels by SSSE with pairwise constraints (second row), and
predicted labels by SSSE with label constraints (last row).
The spring embedder separates the ground truth cell type for
most datasets, and SSSE rightly clusters most of the cell types.
However, some cell types stick to each other, resulting in
suboptimal separation when subjected to SSSE. In addition,
some cell types have very small numbers of cells and are
interspersed among other cell types, making them clustered as
a part of other cell types. For the dataset Baron(human), the
constructed data graph G fails to separate many of the cell
types, leading to poor performance of SSSE on this dataset.

VI. RELATED WORKS

A. Semi-Supervised Clustering
Most of the existing semi-supervised clustering methods

leverage prior information in two approaches: (1) They strive
for a clustering outcome that aligns with given side infor-
mation by integrating a regularization term into the initial
clustering objective. (2) They seek to derive more informative
similarity (or distance) by learning an adjusted similarity
measure from the given side information [15], [16]. In this
work, our focus is the first approach.

Prior information can take different forms of constraints,
among them pairwise constraints are the most widely used.
Wagstaff et al. [45] introduced the concept of constrained
clustering using pairwise constraints in 2000 and proposed
a centroid-based semi-supervised clustering algorithm COP-
KMeans [12] in the next year. Hereafter, numerous semi-
supervised clustering methods based on various conventional
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TABLE VI
PERFORMANCE OF METHODS FOR SEMI-SUPERVISED CLUSTERING ON SINGLE-CELL RNA-SEQ DATASETS. BOLD: THE BEST PERFORMANCE .

Metric Cat. Method (%) 10X PBMC Mou. bladder Hum. kidney Hum. liver CITE PBMC Baron Karagiannis

ARI

U
ns

up
. GBSC 33.49±0.00 21.38±0.29 04.30±0.82 00.06±0.06 13.58±10.7 00.56±0.12 OOM

U-SPEC 22.31±8.36 39.60±3.78 00.25±0.04 00.26±0.10 00.77±0.14 42.18±2.89 33.19±2.60

U-SENC 29.25±2.20 39.48±2.30 01.34±1.16 34.28±16.6 04.70±0.03 38.20±2.41 31.41±0.97

SEscalable 64.45±0.05 60.30±0.05 52.93±0.14 68.01±14.6 59.73±2.27 47.02±0.71 48.73±4.67

Pa
ir

w
is

e PCPSNMF 20.52±9.61 14.52±3.22 16.28±4.47 OOM OOM OOM OOM
OneStepPCP 43.12±0.06 44.18±4.19 41.48±2.60 56.51±9.78 49.12±3.97 60.79±3.76 N/A
CMS 09.38±4.33 08.28±0.52 07.92±4.51 N/A N/A N/A N/A
SC-MPI 27.75±13.1 18.79±3.18 16.54±2.35 11.52±4.58 19.84±3.51 36.27±8.52 OOM
SSSE (Ours) 68.42±3.68 66.88±1.70 68.63±7.81 80.89±8.36 62.03±0.97 47.80±3.79 56.03±1.58

L
ab

el

Seeded KMeans 67.03±1.51 38.55±4.61 17.35±0.36 18.12±5.67 50.19±0.38 18.60±0.36 38.35±0.00

S4NMF 18.39±1.47 26.71±0.90 24.64±0.99 OOM OOM OOM OOM
SC-MPI 54.28±6.46 43.13±10.7 43.71±24.3 93.48±1.98 61.04±2.36 77.15±7.28 OOM
SSSE (Ours) 67.46±0.80 61.76±0.79 61.61±4.18 73.13±12.7 61.75±1.00 50.07±6.76 55.49±1.41

NMI

U
ns

up
. GBSC 50.18±3.51 42.76±0.14 15.05±3.18 02.13±0.05 28.05±12.6 02.98±0.29 OOM

U-SPEC 40.28±12.4 62.37±1.56 02.40±0.22 02.16±0.37 04.41±0.71 64.50±0.58 60.14±1.71

U-SENC 47.39±2.26 64.67±1.00 07.52±3.99 58.13±8.18 19.53±0.10 65.02±1.42 61.15±0.55

SEscalable 75.33±0.03 74.46±0.04 72.02±0.01 74.05±3.78 67.38±1.45 58.79±3.46 55.26±1.83

Pa
ir

w
is

e PCPSNMF 34.72±11.6 39.61±4.39 30.40±4.12 OOM OOM OOM OOM
OneStepPCP 58.26±0.21 64.48±1.85 55.68±1.44 68.98±1.59 68.49±1.91 75.95±1.45 N/A
CMS 22.82±7.43 10.56±3.69 12.26±6.74 N/A N/A N/A N/A
SC-MPI 39.62±13.4 40.70±2.76 30.82±2.36 25.92±3.04 38.93±3.37 50.56±5.27 OOM
SSSE (Ours) 76.26±0.85 76.41±0.51 77.80±3.05 76.27±2.56 69.95±1.49 59.01±1.68 55.97±1.17

L
ab

el

Seeded KMeans 70.79±0.93 62.24±3.10 39.66±0.63 44.13±3.46 66.07±0.11 37.78±0.80 63.19±0.00

S4NMF 28.32±1.43 44.08±0.99 39.44±1.46 OOM OOM OOM OOM
SC-MPI 65.32±2.17 58.08±0.56 53.40±13.9 86.33±1.06 68.56±1.59 75.98±3.09 OOM
SSSE (Ours) 76.33±0.46 75.11±0.28 75.87±1.62 74.83±2.54 70.47±1.55 60.07±2.96 55.77±1.17

G
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Fig. 7. Visualization of single-cell RNA-seq datasets.

clustering have been proposed, such as KMeans-based [46],
Spectral clustering-based [10], density-based [9], and NMF-
based [38] methods. More recently, Jia et al. [39] pointed
out that the two-step manner of most constrained spectral
clustering algorithms based on pairwise constraint propagation
(PCP) leads to sub-optimal clustering output, and proposed a
joint PCP model by unifying these two steps of propagation
matrix learning and affinity matrix learning. Schier et al. [9]
proposed a semi-supervised mean shift clustering algorithm
using cannot-link constraints, this algorithm generates indi-
vidual distributions of the sampling points per cluster through
a density-based integration.

Prior information can also take the form of label con-
straints. Semi-supervised clustering algorithms based on label
constraints originate by Basu et al. from Seeded-KMeans [1]
and go through a long-term development in the following two
decades [7], [47] In the recent past, Jiang et al. [7] presented a
“Compact-cluster” assumption, i.e., without low-density sep-
aration inside a cluster, for semi-supervised clustering, and
proposed the CSSC framework via cluster-splitting technique.
Liu et al. [48] proposed a semi-supervised NMF clustering
method LpNMF which uses data’s intrinsic geometric structure
in the regularization term of its objective.

There exist some other types of constraints, such as triplet
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constraints [8], size constraints [14], and existential cluster
constraints [49]. In the big data era, many datasets have differ-
ent types, which calls for semi-supervised clustering methods
to be able to tackle more than one type of prior information.
Only a few methods [3], [50] consider multiple types of
constraints at the same time, among them our previous work
SSE [23] uniforms pairwise constraints and label constraints
into one relation graph.

B. Scalable Clustering
Scalability is important for clustering in the big data era,

especially for graph-based clustering methods. There exists a
long list of scalable clustering methods [17], [18], [20], [51],
[52], most of which take specific scalability strategies designed
for different clustering methods. A widely used scalability
strategy is clustering size reduction [17], [18], [51]. For exam-
ple, Monath et al. [51] propose a nearest neighbor-based sub-
cluster component algorithm to form sub-clusters and reduce
clustering size, achieving scalable agglomerative hierarchical
clustering scaling to billions of data points. Another strategy is
anchor graph generation [20], [52], where a small number of
anchors are selected to construct a data-to-anchor graph. One
example is the landmark-based sparse representation (LSR)
proposed by Cai et al. [52] for large-scale spectral clustering,
where the original data points can be represented by sparse
linear combinations of KMeans chosen landmarks.

The scalability of semi-supervised clustering methods is less
discussed [17], [21]. Van et al. [17] proposed COBRA for fast
active clustering with pairwise constraints. It over-clusters the
data via KMeans to reduce the data size, and sequentially
merge clusters by querying pairwise constraints. Gao et al.
[21] proposed an efficient local search algorithm FastCCP
for constrained clustering. It first merges instances connected
by must-link constraints, and then performs local search for
clustering based on cannot-link constraints. However, all of
them fail to handle super-large datasets.

VII. CONCLUSION

This paper proposes a novel scalable and general semi-
supervised clustering method via structural entropy, namely
SSSE. It enables scalability on data size via graph sampling
and generalizability on constraint types by giving a uniform
formulation of different constraints. Specifically, we design
objectives based on structural entropy along with a regular-
ization term to integrate constraints. We formulate pairwise
and label constraints as a uniform view and store them in a
relation graph utilized in the regularization term. We apply
a sampling-based scalability strategy to achieve efficient and
scalable clustering and propose a neighborhood-preserving
sampling strategy to alleviate the impedance of sampling on
clustering accuracy. Furthermore, we design objectives and
optimization algorithms for semi-supervised partitioning and
hierarchical clustering based on 2-D and high-D structural
entropy, respectively. We conduct extensive experiments on
real-world clustering datasets at different scales, verifying the
effectiveness and efficiency of SSSE. We also apply SSSE to
single-cell RNA-seq datasets for cell clustering, demonstrating
its functionality in biological data analysis.
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